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CHAPTER 1

INTRODUCTION

OBJECTIVE

This is an interim report on work which, it is hoped, will lead to a
greater understanding of how the energy from a shock wave is transferred to the
internal vibrational modes of molecules in solid explosives. Thus, the work
should be applicable to the study of the initiation and shock sensitivity of
explosives. If we could, for example, predict shock induced energy transfer
rates for particular types of bonds, then we could design energetic materials
with preferred initiation and sensitivity characteristics.

HISTORY

In 1979, D. J. Pastine and co-workers pointed out that because many
explosives have weak intermolecular bonds and strong covalent intramolecular
bonds the average frequency of intramolecular vibrations (internal mode or
optical mode vibrations), wgy, would be much higher than the average frequency of
intermolecular (lattice mode or acoustic mode) vibrations, wy, with the ratio
wo/wg typically of the order of ten.l Thus, the immediate effect of a shock on
such materials would be to increase the temperature of the acoustic vibrational
branch while leaving the optical branches at the initial temperature. The
relaxation time required before the internal molecular temperature reaches a
critical value sufficient for the shock to grow to detonation would be
sufficiently long so as to be comparable to and indeed determine the shock pulse
duration required to produce detonation at a given shock pressure. In other
words, the relaxation time for thermal equilibration of the internal modes is
the controlling factor in the initiation of reactions. Using a simple classical
mass and spring model, Pastine et al. estimated that, at a shock temperature of
500°K, the lower limit to the acoustic/optical relaxaiion time is of the order of
several microseconds for systems in which the acoustic frequencies wy are around
1013 rad/sec and the optical mode frequencies we are around 10 4 rad/sec. They

1Pastine, D. J., Edwards, D. J., Jones, H. D., Richmond, C. T., and Kim, K.,
"Some New Concepts Relating to the Initiation and Failure of Detonable
Explosives,' in High Pressure Science and Technology, Vol. 2, ed by
K. D. Timmerhaus and M. S. Barber, Plenum, New York, 1979.
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also predicted that the relaxation times would be very sensitive functions of
the frequency ratio wy/w, with the relaxation times decreasing bv four orders
of magnitude when the ratio decreases from 10 to 6. Thus, the very lowest
frequency intramolecular modes, which are typically bending rather than
stretching modes, should be the most important in the relaxation process.

The work of Pastine, et al., was followed by that of E. T. Toton who
developed a more refined quantum mechanical description which exploited the
disparity between intra- and inter-molecular mode vibrational frequencies.* The
results of Toton's calculations also pointed toward the importance of the lowest
frequency intramolecular modes in the relaxation process. In this work, we will
develop Toton's model, calculate shock induced internal mode transition rates
for nitromethane, and attempt to relate our results to critical shock initiation
data for nitromethane.

CHARACTERIZATION OF THE SHOCK

When a shock wave travels through a solid material, it excites the lattice
normal vibrational modes to higher levels or, in other words, creates acoustic
phonons. The shock also compresses the solid, increasing the frequency of the
acoustic modes. We wish to calculate the rate at which acoustic mode energy is
transferred to the molecular internal modes (relaxation rate). For this
purpose, it is assumed that the distribution of acoustic mode energy relaxes to
a thermal distribution in a time which is short compared to the time required to
create a significant number of optical (internal mode) phonons. Thus, one
immediate effect of the shock is to raise the temperature of the acoustic modes
while leaving the internal modes 'cold." The non-radiative transition rates
between internal mode levels then give an estimate of the rate at which the
internal modes relax to the new, higher temperature. Later, we will need to
determine the change in the average acoustic mode frequency produced by the
shock. This can be deduced approximately from the compression by integrating
the Grineisen parameter along the shock Hugoniot. Hence, in this model, the
effect of the shock can be characterized by two quantities, the compression and
the acoustic mode temperature produced by the shock.

ACOUSTIC MODES THERMALIZE ON A PICOSECOND TIME SCALE

The assumption of rapid thermalization of the acoustic modes compared to
the internal modes is not unreasonable since internal mode frequencies are
generally much higher than lattice mode frequencies and this mismatch should
greatly reduce the rate of energy transfer between lattice and internal modes.
From the work of Van Vleck, we can estimate that the acoustic modes should
thermalize on a picosecond time scale.? Van Vleck computed the rate of energy
transfer between lattice oscillators due to anharmonic perturbations when
different portions of the frequency spectrum are not in thermal equilibrium.

*Toton, E. T., NSWC/WO, unpublished.

2yan Vleck, J. H., "Calculation of Energy Exchange between Lattice
Oscillators," Physical Review, 59, 730 (1941).
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His result for the transition rate from level n to level n-1 for a particular
lattice oscillator when the temperature of the main body of lattice oscillations
is at a temperature T is

5
Wn,n_l LV nD(T/TD)2 \)D (1)

where vp is the Debye frequency, Tp is the Debye temperature, and D is a
constant characteristic of the solid. The value of D is about 1075l sec%
for typical solids. Equation (1) is valid for T > Tp. For n=1, T=300°K,
and vp ~ 3x1012 Hz, Equation (1) gives transition lifetimes of the order
of 10°12 seconds.

BORN-OPPENHEIMER APPROXIMATION APPLICABLE TO INTERNAL MODES

Van Vleck used the usual first order perturbation theory to calculate the
transition rate. While this is satisfactory in the case of lattice relaxation,
it will prove unsatisfactory, in most cases, for lattice-internal mode relaxation
since internal mode frequencies may be an order of magnitude greater than
lattice mode frequencies. An exchange of energy between lattice and internal
modes which creates, for example, one optical phonon will involve the
annihilation of five, ten, or more acoustic phonons. To determine the
transition rate in this case would require a fifth, tenth, or greater order
perturbation calculation. Thus, Toton* developed a Born-Oppenheimer formalism
analogous to the adiabatic approximation used in treating the coupling of
localized electronic states to lattice vibrations® and similar to a formalism
described by Lin.* In this formalism, the lattice modes are considered the
slow subsystem components and the internal modes are considered the fast
subsystem components. The approximation gets better as the disparity between
internal and lattice frequencies increases.

NON-ADIABATIC OPERATOR INDUCES NON-RADIATIVE INTERNAL MODE TRANSITIONS

In the Born-Oppenheimer approximation, the total Hamiltonian H of the
system is separated into two parts, the adiabatic part ¥ and the non-adiabatic
part &. The Born-Oppenheimer states are eigen-solutions of . The non-adiabatic
part £ can be considered an interaction which induces non-radiative transitions
between the stationary Born-Oppenheimer states.

*Toton, E. T., NSWC, unpublished.

3Perlin, Yu. E., "Modern Methods in the Theory of Many-Phonon Processes,"
Soviet Physics-Uspekhi, 6, 542 (1963).

4Lin, S. H., "Theory of Vibrational Relaxation and Infrared Absorption in
Condensed Media," J. Chem. Phys., 65, 1053 (1976).
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NSWC TR 83-90
AN APPROXIMATE EXPRESSION FOR THE NON-RADIATIVE TRANSITION RATE

In order to obtain an expresion for the non-radiative transition rate
between internal mode levels, we expand the interatomic potential in a series of
terms up to the third order in the vibrational normal coordinates. The order of
magnitude of the third order coefficients is obtained from dimensional arguments
to be described later. In addition, we make an approximation of the Condon type
in which we assume that certain internal mode matrix elements do not depend on
acoustic mode coordinates. We also assume that the acoustic modes can be
characterized by a single average frequency which we will refer to as the Debye
frequency. Then, isolating a single internal mode and ignoring the interaction
between internal modes, we obtain (from the non-adiabatic operator) the
following rate for a transition from internal mode level n to level n+l.

(2n+1 )[2n+1+(2n+5)wD/wo]+4w%/wc2)

Wpen+l = (n+l) Wo1 (2)
1 + Swp/w +4wl/w?
o D o
2 2 © wo/wp ~fw ,/2kT
Wol = 421 (1 + Suplug + 4w _/w )An\/_g T e (2a)
D [o] wD T+
o 2w
- D
e (2b)

In Equation (2a), T is the temperature of the thermalized acoustic modes, w,

is the circular frequency of the internal mode, and wp is the (circular)

Debye frequency. The anharmonic coupling effects are all condensed into the
quantity AQ, called the Stokes shift. Equations (2), (2a), (2b) are valid for
temperatures T greater than the Debye temperature Tp (=ﬁwD/k, k is Boltzmann's
constant) but less than Tpwp/AR. We will see later than wD/Aﬂ >> 1. For the
Born-Oppenheimer approximation to be valid, it is required that wy/wp >> 1. To
obtain the transition rate W, ._., change the sign of the argument of the
exponential function in Equation (2a) and change n+l to n in the first factor in
Equation (2).

= CHARACTERISTICS OF THE NON-RADIATIVE TRANSITION RATE

i

| Several inferences may be made from Equation (2) and (2a). For transitions

| between low lying levels, transitions between the ground and first excited
states will have the longest lifetimes. The internal modes with the lowest

- frequencies w_ generally will have the greatest non-radiative transition

P rates due to Bhe factor

b wy/w

! (T/T*) .

4

L. This factor also can lead to large increases in transition rate for relatively
small increases in temperature and Debye frequency.
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INTERPRETATION OF THE STOKES PARAMETER

The Stokes parameter AQ which appears in Equation (2a) has a simple
interpretation for optically active internal modes. The coupling between
internal and lattice modes splits a single internal mode absorption or emission
line into a band of lines and the maximum for the emission band is lower in
frequency than the maximum for the absorption band by an amount AQ. In
addition, the second moment of the band is a function of Af. If the band
shape were gaussian, there then would be a straightforward relation to the band
width. This is the case when the formalism is applied to electronic states
(F-centers in alkali halides). However, as we will see, the band shape for
internal vibrational modes is highly non-gaussian so that it is difficult to
extract AQ from the band width.

In the next chapter we discuss the formal development of the theory.

SLax, M. J., J. Chem. Phys., 20, 1752 (1952).
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CHAPTER 2 |

THEORY =

.1

USE BORN-OPPENHEIMER APPROXIMATION ]

We apply the Born-Oppenheimer approximation to the normal vibrational modes 4

of a molecular lattice. The internal modes constitute the fast subsystem and ]

the acoustic modes constitute the slow subsystem. The separation of the total 58

Hamiltonian into an adiabatic part X and a non-adiabatic part £ which induces Zg

non-radiative transitions between Born-Oppenheimer states is described in -

Appendix A. 3

5

GOLDEN RULE TRANSITION RATE EXPRESSION a

-3

Let n. be the acoustic mode quantum number for a mode of frequency w,. Let -ﬁ

i be an internal mode quantum number for am initial internal mode state and let 3

f be the quantum number for the final internal mode state. Let n denote the set ‘i

4 of initial acoustic mode quantum numbers {nc} and let m denote the set of final =

E acoustic mode quantum numbers {m ;. Then the transition rate from the initial ]

[ to final state produced by the non-adiabatic interaction is obtained from first 3

- order time-dependent perturbation theory (golden rule).

- .

:P W(i,n>f,m) = %_ﬂ_ |<f,m l‘tli’n> I 2 §(Efm = Ejn) (3) g

We are interested in the total transition rate assuming a thermalized -

P

i /il oNOs

distribution of acoustic mode levels, so we must sum Equation (3) over final
acoustic states m and average it over initial acoustic states n. The result is

W(is£) = le_" Z P |<E,m|Lli,n>| % § (Egy - Eip) (4)

m,n

where P, is the probability that an acoustic state with quantum numbers {n.} is
realized. For a thermalized distribution, this is a Boltzmann probability
distribution.

B & BTN

Pp=Qle n (5a)

-RE
q =Ze n (5b) )
n

———
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B8 = 1/kT (5c)
E, = Z: (ne+d) e (5d)

The validity of using the golden rule, Equation (3), for the transition rate has
been studied by Lin using a master equation approach.

]
}
a
Fo

CONDON APPROXIMATION

The remainder of this discussion will be concerned with evaluating the
transition rate given by Equation (4). When the slow subsystem is a collection
of harmonic oscillators the form of the non-adiabatic operator & is given in
Appendix B, Equation (B-2). Using this expression, we obtain the matrix element

. W. 26, 22y,
<all]iny = - mx{<¢f¢fm|—-1- —185 + 2 Vet | — ¢in>} (6)

K 39 3q, aqg

If we assume that the reduced matrix elements

v .
Lugi = = B (vg|L> =)
9
=_ 7 2%y,
Meei = - 5 vl A (7b)
aqK

do not depend on the acoustic coordinates q,. (our ''Condon approximation'"),
then we may write

m|Lin> = Z {‘(x £1<9 fu|

While the Condon approximation is often a good one in dealing with electronic
states, its validity is more questionable in this case. However, the
simplification it produces is considerable. Similarly, it is often assumed that
the /il ¢; term in Equation (8) can be neglected compared to the.i;fi term since
the /. ¢; term contains the second derivative of the wave function with

respect to the slow system coordinates. Because of the questionable validity of
i this assumption and because dropping the term leads to no appreciable
simplification, we will retain it.

ad .
5 10N+ M4 <¢fm|¢in>} (8)
9

6Lin, S. H., "On the Master Equation Approach of Vibrational Relaxation in
Condensed Media," J. Chem. Phys., 61, 3810 (1974).
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A INTEGRAL EXPRESSION FOR THE TRANSITION RATE
) The sum appearing in Equation (4) can be ccnverted to an integral by it
1 several methods summarized by Perlin in his review article (See Reference 3, e
E' footnote p. 3). One convenient method involving the use of the integral -
3 representation of the delta function 1is outlined in Appendix C. The resulting 3
& transition rate (see Equation (C-9)) is i
l“.' ™ 2 :;::
h W(isf) = L f Ffi(t)exP{i‘”fit & 2 : Fe(t)dgi - S}dt (9) .
: & :
if where
Fgi(t) = E :'a{«fiPFx(t) + E L £iby £i () z :"{»*xfiAxfiEx(t) ®
K K K =
% >
+ E , MEeidy e1 + M £ g0y £1Ex (0
KA ..:.:
+| E mxfilz (9a) ;":
K
. 1
cosh(ivw t + 7 Bhw )
Fe(t) = _k - (9b)
2 sinh (E Bhw, ) .
.. " (]
E.(t) = F(t) - % coth (% Rfuw, ) (9¢)
S=E L coth (1Bﬁm)A2f' e
2 7 0k’ Skfl (94) :
K r
Befi T f ~ %i . (9e) %
In Equation (9e), q.f and q.j are the equilibrium values of the dimensionless ,
acoustic normal coordinate q. when the internal mode is in states f and i, ]
respectively.* We define our dimensionless coordinates to be those which put
the kinetic energy operator in the form shown in Equation (B-1) in Appendix B.
[ ]
L

*See Appendix F.
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APPROXIMATE EVALUATION OF THE TRANSITION RATE INTEGRAL

An approximate evaluation of the integral in Equation (9) may be obtained

by the method of steepest descents as described by Perlin (Reference 3, -
footnote, p. 3) and outlined in Appendix D. The result is still somewhat )
unweildy so we make the further approximation that the sums over the acoustic
modes can be replaced by sums in which the frequencies w, are replaced by 3
some average frequency wp. For convenience, we will refer to wp as the

Debye frequency although the connection is somewhat tenuous. However, there is
some evidence that the average frequency determined from the lattice infrared £
absorption spectrum correlates well with the Debye frequency determined by other b

QAU Al o
V g
o O

Vel

.-
.

}_ methods, for example, from specific heat data.
ﬂl The transition rate expression resulting from these approximations I%
- reproduced below.
E] W(isf) = L [ 21 Fgi(-izgy) exp{g(zy)} (10) 4
¢ 12 YVg"(z4) ]
i where
r - >
.;- gﬂ(Zo) = wDP (10a) :‘
i Ipl B
exp{g(z,)} = expll Bhwpp+P-SY J__X _ i
Plg\Z2, p{z DP IPI +P (].Ob) ‘
)
Fgi(-izg) = E :I"{nfileD +| E :"(.c £ibx fi|2{FD'S/zso}2 ¥
K K £
+ 2 Re{ E mnfi E afAfiAAfi} {FD - s/zso} )
K A N
+|§ m ;12 (10¢) -
K 3
s =S, cothe rst> (10d) A
P =4fx2+p? (1l0e) d
P Fp = P/2S, (10f) )

7Plendl, J. N., "New Spectral and Atomistic Relations in Physics and Chemistry :
of Solids," in Optical Properties of Solids, S. Nudelman and S. S. Mitra, eds., )
Plenum, New York (1969), p. 310 ff.
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5 The three parameters p, S,, and x, appearing in the transition rate expression
are defined below, Equations (lla-c).

A
w ]
p=- _fi (11a) R
(.UD 3
So = L 82 2
0 =3 e (11b) »
K 3
S :
X = i

31nhi5 BﬁwD> (11c¢) _j
3
b
The dimensionless quantity S,, introduced by Huang and Rhys,8 is a measure i

of the strength of the anharmonic coupling between a given internal mode and the
acoustic modes. As we will see in Chapter 4, S, is a dimensionless Stokes ]
shift, S, = a8/2wp. f
It remains to evaluate the internal mode reduced matrix elements,attfi !’
andfani. For this, we need a specific model Hamiltonian to be described in }ﬁ
the next chapter. 4
&
3
1
§
»
3
1
"
%
3
i
=3
1
1
1 ' _ . 2
3 8Huang, K. and Rhys, A., "Theory of Light Absorption and Non-Radiative i
[ Transitions in F-Centers," Proc. Roy. Soc., A204, 406 (1950), '
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CHAPTER 3

MODEL HAMILTONIAN AND BORN-OPPENHEIMER SOLUTION

MOLECULAR LATTICE HAMILTONIAN

We write the Hamiltonian of a molecular lattice in the following form:

(98]

rN 2
Hii= % Mhu, + V(ul,...,u3rN)

=]
)
—

where u, is the n'th cartesian coordinate displacement from equilibrium, N is
the total number of molecules, r is the number of atoms per molecule, and M,
The potential

is the mass of the atom associated with the n'th coordinate.

energy V is a function of all the displacements.
series we obtain

(2) (3)
V= an upu, + ™~ Vlmn ujupun ...

m,n l,m,n,

There is no linear term in Equation (13) since the u, are displacements from
Concentrating on the quadratic term in Equation (13), we may find

equilibrium.

a transformation to real, dimensionless normal coordinates in the form

3rN

BRNE E Anj o 9

=] an

(S

where A, ; is a real, orthogonal matrix.

Hamiltonian operator becomes
E : Aijk‘li‘quk e

2 2
= 1 : =g
H E‘:._ th (%J __TE)-+ A
i,],k

i 2 3q?
j

where

Aijk = z:

l,m,n

(3) ﬁ3
A1iAmjAmkY1mn M i 16 0k

11

In the new coordinates, the

| [ RORDACIAR ] SO |

o O oo
Y WY N B RV S Sl

oee vy
LIPS <

(12)

s e 20, SN
et i B M

[ S
s

If we develop V in a power

M
(13) ,j
|
b
o
¥
1
(14) |
4
4
i
!
i
(15) )
K
(16) ;
]
{
3
]}

1
(]
q
(]
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Up to this point, we have made no distinction between lattice and internal
modes. Now, following Toton,* we isolate one internal mode whose coordinate we
designate q,. Greek subscripts will designate acoustic mode coordinates.

Then, the Hamiltonian may be written in the following form:

2 2 g 9
=1 3 E 1 3
H =2 fw = s -~ fuw =rorn
g (qo 2) P (q.c 2)

aq K aq
o K

2
* 9, § : Boadeda * qoz : Cede * --- (17)

KA K

Since we are interested in the interaction between the internal mode q, and
the acoustic modes q., we have ignored terms which involve interactions with
internal modes other than g, and anharmonic terms which involve internal modes
alone or acoustic modes alone.

BORN-OPPENHEIMER SEPARATION

"Following the Born-Oppenheimer prescription, we separate the Hamiltonian,
Equation (17), into the fast part

fr—=

2
Ho = L fw, {- 2 _ + (1+2C) qo + 2Bqo, + 2A . (18)

where

g
%

f= )}
3
o]
=}
(]

R

- =

>
to
Fal
>
0
o
L0
>

. g - 0 . .
’ ..! 3 . o0l ." A e A -.In .
(RCREN AR LR TP O PUPORAUTTTW T ¥ SR SIS OF SU e i bl

X
L -3
|y .
EI -3
F fwoC = Z Ce e 04
K 4
|
E .
F -3
r and the slow part =
3 -
3 o
¢ 2 3
; e 2 e 2 e,
L K 3qx (19) |
3 R
P, §)
|3 .
| [
r
E 2
£ *Toton, E. T., NSWC, unpublished. 1
: , .
4 |
f ;
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The Born-Oppenheimer basis functions, therefore, are products
¥(a5,9,) = ¥(q5,q9 )¢ (q,) (20)
where the first factor is a solution of the fast part
Howg, = eglq. g (21)
and the second factor is a solution of

2
%- l.ﬁ“K i+ ES(qK)} ¢sn = Egn 4sn
ZE: 2 >
K

q (azY

The internal mode quantum number is s and the collection of acoustic mode
quantum numbers is represented by n.
INTERNAL MODE (FAST SUBSYSTEM) SOLUTION

Equation (21) is a harmonic oscillator equation which we can reduce to
standard form by making the change of variable

Z = p(q4~q,) (23)
where )

=1 % Je (23a)

q, = - 4B (23b)

Then, Equation (21) becomes

2
- Lpyp2f3” - 22) « Lau [24 - p7482) pvg = egus (24)
2 222 2

with energy eigenvalues

egla) = (s+%)‘hwopz * ( - % p“*BZ)mo (25)

(5501 2 ool
The wave functions are

‘ps(qosq.() =J5 WS(HO)(Z) (26)

13
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where y{H0)(Z) is a normalized harmonic oscillator eigenfunction. The ]
factor vp normalizes the wave function as a function of q,. Both the energy 3

eigenvalues and the wave functions depend parametrically on the acoustic f
coordinates q, through the quantities A, B, and o. £
EQUILIBRIUM ACOUSTIC NORMAL COORDINATES 1
The equilibrium acoustic normal coordinates are determined by the energy i

'S

: eigenvalues, Equation (25), which act as effective potentials for the acoustic
- wave equation. The equilibrium coordinates are derived in Appendix F and the
result [Equation (F-3)] is

w

b C ::
?__. G _(s + %> K (27) i
3 fu e 1

where q.g is the equilibrium value of coordinate q. when the internal 1
mode is in state s.

NON-ADIABATIC OPERATOR MATRIX ELEMENTS

b - 1

We may substitute the wave functions, Equation (26), into Equations (7a,b)
to obtain the non-adiabatic operator reduced matrix elements‘ini andzm<fi. The
£ . calculation is outlined in Appendix E and the results are given in Equations
(E-6) and (E-7). The matrix elements are functions of the acoustic coordinates,
but, in the spirit of the Condon approximation, we will assume that they are
constants with values obtained by substituting the equilibrium values of the
acoustic coordinates for the internal mode in the initial state i. In additioen,
we assume that the third order anharmonic corrections to the Hamiltonian,
Equation (17), are small so that the quantities B,C<<1 and p=xl.

e
Ot 'S
.

i -

The results of Appendix E indicate that the non-radiative transition rates
are non-zero only for nearest-neighbor (i+itl) and next-nearest-neighbor (i+it2)

transitions. Of these, the nearest neighbor transition rates will be typically

i A b e e
"-vvﬂllbf-“
:

- larger by many orders of magnitude. Thus, from Equations (E-6, E-7) we obtain
-

<

p! _.;4( wK i CK

- Sl i K go(ivl Bex i - 2 Bex Qi i (28)
. wO mo

3 A K A

o i

5 My io1,i = 25 2GED B (29)
br 4 Yo

i.

3

i ESTIMATING NORMAL MODE ANHARMONIC COUPLING COEFFICIENTS

g We are now in a position to determine the non-radiative transition rate if
L‘ we estimate the normal mode anharmonic coupling coefficients By and C..

G RRT

14
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Comparing Equations (16) and (17), we can obtain expressions for C. and

B., in terms of the third order coefficients of the power series development

of the potential energy of the crystal. In particular, we write C. and
B., in the following suggestive forms )]
L Wy e 1
KT — == (30) !
/N M w oYW, 1
where h
Vi . E A1 0% mo’nk v(3) (30a) 1
/N M3;2 1,m,n, /MMM, lmn i 1
-
"
/N M3/2 VUJOUJK(DA j
where 1
-
q
be = E it v(3) (31a)
/N M3/2 1,m,n /MMM, lmn '
In Equations (30a) and (3la), M is the mass of a molecule and N is the uTber of 1
molecules. Since binding forces are not long range, the coefficients V %n -
are significant only when l,m,n are nearly equal. Therefore, the triple sum has ﬂ

effectively the order of N terms. The orthogonal transformation coefficients

Alj are typically sinusoidal and proportional to N"1/2, Therefore, Cc 1is
proportional to NeN"3/2 = N Apparently, this is true also of B, but it is
not clear that there are not other constraints which determine the non-zero
values of B.p. It is clear, for example, that the energy eigenvalues in Equation
(25) should be essentially independent of the size of the system and so the
quantity B appearing in Equation (25) and defined after Equation (18) should be
essentially independent of N when B is evaluated for q equal to the equilibrium
values qyg. For this to be true, we require By, to be proportional to N1

Then Equations (30a) and (3la) define average third order coefficients V3. and

V3ea

o

Calculations for a linear diatomic chain indicate that, for a rough
approximation, we may set V3. ~ f'''(re) and V3. ~ 273/2 grov(r,) where £(r) is
a pair potential describing the intermolecular force and r, is the equilibrium
molecular separation. Using this approximation, we may obtain an estimate of
the function Fgj which appears in the transition rate expression (see Equation I
(10c)). The calculation is described in Appendix G. When So<<1 and Tp<T<Tp/2S,,
the resulting transition rate reduces to the expression in Equations (2, 2a, 2b
in which we have set A = wDSQ/Z. The results of Appendix G (see Equation G-=9)
are combined with the transition rate expressions (Equations (10), (11)) and .
summarized below [Equations (32-32f)]. 1

15
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| 1 v Fei
\ Wisf = /27 wp 2 exp {g(%),————?_ (32)
m /P (fw )
! D
% Aw IPI
«
(z)4 = e 1_Dpsp-gp{ x| s
5 exp {g 2o } Xp {2 T p } {IPI+P} (32a)
it
8
. F,. s
ﬁ fi_ -5 _o [(i+1)6f’j_+1 + in’i_l] §(2i+1)2(P-s)2 ,
;_ (hup)2 B f
,L + 4(2i+1)(P-8) + (2i+1)2 P+4} (32b) i
w,. l
= fi
plLE 3 (32¢)
“p
x = Sy/sinh (% Rfiwp) (32d)
P = 4p2 + x2 ) (32e)
S = S, coth (% Rhwp) (32f)

For up-transitions, the final state f = i+l so that wgj = w, where w, is the

internal mode vibrational frequency. For down transitions, f = i-1 so that
W] T Tweoe

, e
. s

-'
.

11

y
9
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CHAPTER 4

RADIATIVE TRANSITIONS AND THE STOKES SHIFT

GOLDEN RULE FOR RADIATIVE TRANSITIONS

In order to obtain the transition rates for radiative transitions, we can
adapt the formalism for non-radiative transitions by replacing the non-adiabatic
operator dtby the dipole moment operator u. The expression for the radiative
transition rate corresponding to Equation (4) is then

Wing(aw) = %" P Z Pn|<f,m|u|i,n>|26(Efm-Einiﬁw) (33)

m,n

where p is a factor involving the intensity of incident radiation (absorption)
or density of radiation field states (emission) whose structure 1is not important
for our discussion. The absorbed or emitted photon has frequency w with the
positive sign for emission and the negative sign for absorption. If we make use
of the Condon approximation, we can assume that ugj (=<f|ufi>) is a constant so
that the radiative transition rate can be obtained from the last term in the
non-radiative transition rate expression by replacing l%meilz with Dlufilz (see
Appendix C, Equations (C-4)(C-9)). The result is that the emission or
absorption at frequency w 1is proportional to the integral

<

I(w) = f etint + glit)g, (34)

)

where g is the function defined in Appendix D, Equation (D-2).

HUANG-RHYS FACTOR RELATED TO MOMENTS OF SPECTRAL DISTRIBUTION

It was first pointed out by Lax that the Huang-Rhys factor is directly
related to the moments of the distribution, Equation (34) (see Reference 4,
footnote p. 3), The derivation is repeated in Appendix H wherein it is shown
that the Stokes parameter A 1s the difference between the means of absorption
and emission bands and that 42 = 2S,wp. It is also seen that the second
moment is related to S, (Equation (H-13)):

2
62 = wp S, coth (% Rhap) (35)

17
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r If the distribution were gaussian, it would be possible to determine S, by
: measuring the full width at half maximum, Aw, since, in this case,

Ft aw =2/2 ¢n < o (36)
[
L

R SPECTRAL BAND SHAPE “'OT GAUSSIAN

3 Unfortunately, we see by examining the expressions for skewness and kurtosis
(Equations (H-14)(H-15)) that the deviation from a gaussian distribution is
considerable if S <<1 which is the case for internal mode vibrations. Typical
internal mode_ frequencies lie in the range 500 em™! to 2500 cm™l (1014 sec”l to
1 5 x 101% sec™l) with typical infrared absorption bandwidths of 10-50 em~ L.
E Typical Debye frequencies are around 100 cm 1 (2 x 1013 sec”! or 150°K). Thus, b
- Aw/wp ~ 0.2 which implies, from Equation (35), that § ~ 1/200 and, therefore, if 1

. T>75°K, that $,<1/200. This is in sharp contrast to the situation for electronic )i
P transitions in F-centers where Aw~2000-5000 cm™l so that Sg~20 (see Reference 8,

; footnote, p. 10). 4

ik

HOW TO DETERMINE HUANG-RHYS FACTOR

It is practically impossible to determine experimentally the moments of a
typical infrared spectral band due to the presence of noise. Besides the mean
frequency, the width at half maximum is about the only parameter which can be
measured with any degree of accuracy. However, it is possible to relate the
band width and the Stokes parameter even for a non-gaussian distribution using
the method described in Appendix I. A band shape function with arbitrary third
and fourth moments is chosen and the moments are constrained to satisfy
Equations (H-13) - (H-15). Then S, can be determined from the bandwidth by
finding the root of a transcendental equation. In the next chapter we will
apply this procedure to the energetic material nitromethane.

rew

DU O RIS T T Ry v

SADDLE POINT APPROXIMATION NOT GOOD FOR RADIATIVE TRANSITIONS

E.

By using the method of moments, we have not found it necessary to actually 3
evaluate the integral in Equation (34). This is fortunate since the saddle -]
point approximation which we used for the non-radiative transition rates is not 1
a good one for the radiative rates. This point is discussed in Appendix J.

-

t-.
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3 CHAPTER 5

APPLICATION TO NITROMETHANE

ff LIQUID VERSUS CRYSTALLINE NITROMETHANE

In this section, we apply the results of the preceding sections to the
extensively studied and relatively simple condensed explosive material,
nitromethane. One caveat is necessary, however. Under normal conditions,

e nitromethane is a liquid and even under the extreme conditioni characteristic of
detonations it most likely retains the structure of a liquid. The preceding
results apply, strictly speaking, to a material which has long range periodic
sttucture. It is not clear what the absence of such a structure would have on
the predicted transition rates. In order to make a direct comparison with the
results to be presented, it will be necessary to perform shock experiments on
solid nitromethane.

T rr

PARAMETERS TO BE DETERMINED

In order to apply the transition rate formula (Equation (32)), we need four
parameters for a material. Two are characteristic of the state of the shocked
material: the Debye frequency wp and the temperature T. Two are characteristic

of the internal mode whose transition rate is to be determined: the vibration
frequency wy and the Huang-Rhys parameter S,.

P TRENE . BT U BTN BS & —§ LPGIC YT BTG GR O © - IO T o ¥

The Debye frequency is a function of compression which, in turn, is directly
related to the shock pressure via the Hugoniot relation. The internal mode
vibrational frequencies are only slightly affected by compression** so that we
can safely assume them to be constant.

HUANG-RHYS FACTORS FOR NITROMETHANE

The variation of the Huang-Rhys factor S, with compression is not known,
but the bandwidths of infrared absorption bands generally increase slightly with
compression. In the absenbce of more definitive data at the present time we
will assume S, is constant. Table 1 lists values of several optically active
internal modes of nitromethane. The values are calculated from the bandwidths

G dc S ACICKN N EaC e i

-

SN S S ST [ 5 AP GO T U W T U | 1 S0 LI R N

*See Reference 10, footnote p. 23.

-

I
o

Lot guh e Jeve

**Typically less than 0.02% per kilobar for the optically active internal
modes of nitromethane.
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using the method described in Appendix 1. Two values ot S, are given,
corresponding to the two slightly different representations of the band shape,
Equations (I-5) and (I-6).

We should note here that the optically active modes are a subset or the
tiny fraction of modes which have zero wave number out of the total ot
approximately Avogadro's number of internal modes.

TABLE 1. HUANG-RHYS PARAMETER FOR SOME OPTICALLY ACTIVE INTERNAL
MODES OF NITROMETHANE (CH3NO)

MODE wo (cm™1) dw (cm™1)* So(Eq. I-5) So(Eq. [-6)

CH; rocking parallel

to NO, plane . 11064 29+6 1.47x1072 1.39x1072
C-N stretch 923 6.5¢1.1 1.01x10™3 9.6x10™4
NOy symmetric bending 663 19+2.3 7.3x1073 6.9x1073

NO, rocking perp. to .
NO, plane 609 8.2+1.1 1.58x10~3 1.50x10~3

NO; rocking parallel
to NO, plane 485 7.6:1.5 1.37x1073 1.30x1073

*Bandwidths were measured from infrarecd =hsorption spectra obtained in
a diamond-anvil cell at room temperature (295°K) and pressures ofi the
order of 5-18 kbar. Spectra obtained by J. W. Brasch, Jr. of NSWC.

The data from which S, is calculated were obtained in a diamond anvil
cell at room temperature (295°K) and relatively low pressures (5 to 18 kbar) by
J. W. Brasch of NSWC. The nitromethane is in a solid polycrystalline torm under
these conditions. :

The values calculated for S, are for a Debye frequency of 2 x 1013 rad/sec
(106.2 cm~! or 152.7°K). It was determined that this is a reasonable value
for the Debye frequency at standard temperature and pressure by taking the
centroid of the low frequency part of the infrared absorption spectrum of
nitromethane.
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TRANSITION RATES VERSUS DEBYE FREQUENCY AND TEMPERATURE

In Figure 1, we have plotted the transition rates given by Equation (32)
for the internal modes listed in Table 1 using the values of S, given in the
next to last column of the Table. The transition rate is plotted as a function
of wp for 300°K (solid curves) and for 2100°K (dashed curves). The most
noticeable feature of the curves is the large variation in transition rates with
relatively small chanies in wgs wp, and T. The C-N stretching mode, with a
frequency of 1.74x101% sec~l has a ground to first excited state tran51t10n
rate of about 10717 sec”! at a temperature of 300°K and wp of 2x101° sec™! (this
point is beyond the scale of the graph). On the other hand, the N0, symmetric
bending mode with about two thirds the C-N stretching frequency, three times the
C-N stretch bandwidth, at seven times higher temperature and two times higher
Debye frequency has a transition rate of 109 sec'l, twenty six orders of
magnitude greater.

3
2
E
k
EI

One conclusion to be drawn from Figure 1l is that energy is initially coupled
most rapidly into the lowest frequency internal mode, NOp rocking parallel to
the NO, plane at 485 cm~l. This is not to say that there are not other internal
modes into which energy is coupled more rapidly since we presently have no
transition rate information. We are discounting the NOj symmetric bending
mode since the calculated large transition rate is due to its large apparent
bandwidth and the band may actually be the superposition of two individual bands.

AR

Another conclusion to be drawn from Figure 1 is that small increases in
temperature and compression (compression increases the Debye frequency) will
lead to large increases in the rate of energy transfer. We also note that the
relative importance of the internal modes in energy relaxation can change with
changes in temperature and- compression. For example, at 300°K, the CH3 rocking
parallel to plane the NOy (CHjy rock Il ) has a significantly lower excitation
rate than the NOp rocking perpendicular to the NOjp place (NOy rock L), while at
2100°K the excitation rates are comparable, with the CH3j rock |l rate exceedlng the
NOy rock L at the higher values of wp.

i e i e e

T
2

G

4

Inserting numerical values in Equation (2), we discover that Wy, is
typically ten times greater than Wjy;, and W,5 is typically forty times greater.
Thus, the relaxation time for energy d1str1§ut1on among the low lying internal
levels is determined by the ground to first excited state transition rate,

Wo1. We cannot say anything about transitions between levels lying near the
top of the potential well since our analysis assumes a harmonic internal mode
potential. At this point we can only say that, if the transitions between
levels close to dissociation are also rapid, then the rate Wy would be the
significant parameter determing the overall dissociation rate. We may expect
energy to be redistributed between internal modes more rapidly than it would be
transferred between acoustic and internal modes. Thus, the overall internal
mode thermal relaxation time as well as the overall dissociation rate should be
controlled by Wpj for the fastest internal mode (which seems to be the NOj
rock || in nitromethane).
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RELATION OF DEBYE FREQUENCY TO COMPRESSION

Since we have repeatedly stressed (pun intended) the relation of Debye
frequency to compression, it will be of interest to find this relation for
nitromethane. We can determine this relation approximately by using the
expression for the Grineisen parameter which arises in the Debye mode of a solid,

den wp
R C I — (37)
din v

where y is the Griineisen parameter and v is the specific volume.? Integrating
Equation (37) we get

r in v
D = exp i/~ y den v (38)

P Ln Vg

Hardesty and Lysne10 have calculated the thermodynamic properties of shocked
nitromethane along Hugoniot's for initial pressure of 1 bar and initial
temperatures of 244°K, 298°K, and 373°K. If we numerically integrate their
Grineisen parameter data according to Equation (38), we obtain the results shown
in Figure 2. It is assumed that wpg = 2 x 1013 sec~l. Figure 3 displays a log-
log plot of the same data as Figure 2. From Figure 3 we see that, above 5 kbar,
the curves are nearly linear indicating an approximate power law relation. The
dashed lines are isotherms showing the shock temperature on each Hugoniot.

TRANSITION RATES ALONG HUGONIOT

Using the result shown in Figures 2 and 3 we can plot the transition rates
versus pressure along a Hugoniot. This is done in Figure 4 for the Hugoniot
with initial temperature 298°K. Again, Figure 5 is a log-log plot of the same
data showing very close to power law curves above 5 kbar,

PRESSURE-TIME CRITICAL RELATION

If we disregard the NO, symmetric bending mode, the NO, rocking mode
parallel to the NO, plame is the mode whose transition rate is the most
important in energy transfer from the acoustic modes. If the transition rates
calculated from Equation (32) are approximately correct and if the transition
rate for the NO, rocking (parallel) mode is the controlling factor in the
overall dissociation chain, then the plot of transition rate versus shock

9Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, (Oxford Univ.
Press, 1954), sec. 4.

1OHardesty, D. R. and Lysne, P. C., Shock Initiation and Detonation Properties
of Homogeneous Explosives, Sandia Laboratories Report SLA 74-0165, May 1974.
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pressure for this mode is a sort of pressure-time criterion for initiation of
reactions. For it is clear that a shock of a given pressure must be sustained

o,

‘,
- e

L e

for a time which is some multiple (of order unity) of Wi in order for
significant dissociation to occur.
3 COMPARISON WITH PRESSURE-TIME CRITICAL INITIATION DATA

In this regard, de Longueville, Fauquignon, and Moulard reported critical A
initiation data in the Eressure-time plane for several condensed explosives D,
including nitromethane. 1 We have included that data, shown as short dotted 1
line segments labelled DLFM on the graphs in Figures 4 and 5. The inverse of f
de Longueville, Fauquignon, and Moulard's time is plotted on the ordinate, Wgj. 4
It is interesting, though possibly coincidental, that the DLFM data, over its 4
limited range, show times that are approximately six to seven times the NOj 4
rocking (parallel) transition lifetimes at the corresponding pressures and the D]
curve segments show roughly the same slope. 1
3
~
"
iz
3
4
4
. D
-5
!‘
| >
:
L
_i
4
:
L3
-
2
1l4e Longueville, Y., Fauquignon, C., and Moulard, H., Initiation of Several :
Condensed Explosives by a Given Duration Shock Wave, Sixth Symposium %
(International) on Detonation, ONR ACR-221, Aug 1976, pp. 105 ff. ]
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CHAPTER 6

CONCLUSION

We have presented a quantum mechanical calculation of the transition rates
for shock induced transitions between the low lying internal molecular normal
modes in a molecular solid. We have assumed that the shock produces a
distribution of acoustic phonons which becomes thermalized before any significant
internal mode phonons are created. This assumption seems to have been justified
in the case of nitromethane in which the shortest internal mode transition
lifetimes are-.of the order of nanoseconds while lattice relaxation times
determined from Van Vleck's calculation are of the order of picoseconds or
less. In particular, at the von Neumann spike pressure in nitromethane (about
200 kbar), the NOp rocking (parallel to NOp plane) mode has an excitation
time of about 4 nsec.

When we compared the excitation lifetimes with the pressure~time critical 3
initiation data of de Longueville, Fauquignon, and Moulard, we found that the
times were not inconsistent with the hypothesis that the overall dissociation |
rate limiting factor is the relaxation time (w51) for transferring energy
from the acoustic modes to a limited number of internal molecular modes (NOZ
rocking parallel to NO, plane to nitromethane).

We must reiterate, however, that the numbers we have obtained for
nitromethane are subject to many uncertainties, among them, uncertainties in
determining the Huang-Rhys factor S, for each mode and the uncertainty in a
suitable choice of Debye frequency wp. Small changes in both of these
quantities lead to large changes in the transition rates. Also, for the great
majority of modes which are not optically active, it is not possible to
determine S,. Perhaps the results of neutron scattering experiments may give
useful information on these modes. Other problems are the question of the
validity of the Condon approximation [Equation (9)], the determination of the
anharmonic coupling coefficents [Equation (30) and (31)], the validity of
isolating one internal mode, neglecting the interaction between internal modes,
and the use of a single frequency wp to characterize the acoustic spectrum.
Finally, the shock data available for nitromethane is for the liquid state,
whereas, the calculations, strictly speaking, apply to the solid state. We hope
that experimenters will be encouraged to undertake shock experiments on solid
nitromethane in order to obtain both Hugoniot data and critical initiation
data. In order to apply the results presented here to other solid explosives it
is necessary that the explosive be homogeneous and have an internal mode
spectrum clearly distinguished and well separated from the lattice spectrum.
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APPENDIX A

BORN-OPPENHEIMER APPROXIMATION

Suppose we can split the coordinates of a system into two groups, a fast
subsystem {rj} and a slow subsystem {q.}. The Hamiltonian of the system is

PP T——
y -
-

oy e

H(rj,q) = Tp + Tq + V(ri,q) (A-1)

where T, and Tq are the kinetic energy operators for the fast and slow
coordinates, respectively. Let

Belge ) =60 AviE,0) (A-2)

and consider the solutions ¥4 of the eigenvalue problem

‘r‘_,—gr‘- i il ai w ;

Hiwg (8 g5 ) 2= 0 g (e b cbig by, gb) (A-3)

‘

kN e
.

The eigenvalues € and the wave functions yg(r;) depend parametrically on the
coordinates q. . Suppose the set {¢ (r;,q )} is a complete orthonormal set in
r-space for every of values of q . Then any solution ¥ of the original system

n

. P .
t Schrodinger equation,
E-' HY = Ey (A-4)
- can be written

YETy, g = E ¢4 )b, Crida.) (A-5)

s
Then Equation (A-4) is equivalent to

;-‘ ‘ZIES(qK) + Tq i E]¢S(q,<) ‘l’s (ri,qk) =0 (A-6)
b *
F Now, consider Tq and yg(rj,q.) as operators in q-space. Then
ko
g Te¥s(risae) = [Tgs(ri,ae)] + wglrj,q) Tg (A-7)
i Substituting (A-7) into (A-6) we obtain the following equivalent version of
: (A-4):
: (ML) ¥ = By (a-8)
L .
’ A=)
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> where .

o’y = E Vst 19, ) ;Tq + es(qK)z ¢5(q.) (A~9a) -3
[

( s

: Ly = _S_ [Tq¥s(risa )] o5 () (A-9b) R

{ s K

B 4

3 In Equations (A-9a,b), ¥ is the adiabatic Hamiltonian and &L is the non-adiabatic 2

P operator. The usual Born-Oppenheimer basis is obtained by ignoring L and solving [ 3
' the equation ¥ = E¥, or, equivalently, :

;;_ {Tq N es(qac)i $enlac) = Bgpdsn (9.) (a-10)

!; ' where s,n are the fast and slow subsystem quantum numbers, respectively. The A
] Born-Oppenheimer basis states are D;
. Yon(risae) = vs(risa)esnlag) (a-11) "3

b -3

- 1l

g
-
...n
3
]
»;
3
=
¥
D4
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3
4
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APPENDIX B

NON-ADIABATIC OPERATOR

Equation (A-9b) defines the non-adiabatic operator. What does this operator
look like if the slow subsystem consists of a set of harmonic oscillators? In
this case the kinetic energy operator Tq is

ZE: - > ZE:‘ﬁ 82
i 8 T S o & CHER -
q qK_ 3 3 5 (B-1)
K
aq,

K

In Equation (B-1), the kinetic energy has been written using dimensionless
coordinates q = Ymw/R x and the normal mode frequencies are denoted by w.. The
action of the non-adiabatic operator on Yy, is therefore

2

W ¢ 9%y
Lygy = - E fuw {—S _—Sn+ 1 s ’
sn : Wi {aqK . 3 7 $sn (B-2)

9q¢
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APPENDIX C

EVALUATION OF SUM OVER STATES

Introducing the integral representation of the delta function, Equation (4)

becomes

(-]

w(i-f) = L_
,ﬁZ

f Z exp {i(Efm-Ein)t/‘h} Pn|<fm|¢f.|in>|2dt
=% m,n

(c-1)

In the lowest order, the acoustic mode wave functions are products of harmonic

oscillator wave functions:

()

¢in
K

$in
K

The energy levels are

=RERERT ji: <éx + %>'ﬁwK

K

Ein

and the square of the matrix element appearing in (C-1) is

k) |2
) 2 (k) 3¢in (w)
[<enlLfin>]2 = > eei|” Kot [T <o fm
= kKl 3q, Eﬁk U
. a¢(K) a¢(A)
(k) in () in
*Z"foi"ﬁxfi fm | K> (ofm | 5 ]-I <
K,A K 9q, H#K
nfx
o a¢(K)
() in (k) (k)
*(mefi) Zaﬁxfi {6fm | £> (b fm |¢in >¥
A K K 9q, K K
C-1

W PP e

(c-2)

(c-3)

2
¢(u)
1nu>
(v) (w) (v) (v)
fm | ¢in > I--[<¢fm | ¢in >
vEA
(w) ) |?

[]

T 3

<¢fm l $in > + c.cC.
u u
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+

Substituting (C-4) in (C-1) we obtain

Gl e
<‘me l %in >I
H H

W(is£f) ={—t§ ! exp(iwgit) {’F’fi(t) + Egi(e) + Heile) + ﬁfi(t)}

where
wgi = (Eg-E;) /A
~ 2 )
Ffi(t) = ZHEI' Frcfi(t) H Gufi(t)
K p#x
~ * L
Efi(t) = Zo{rcfix)\fi Ercfi(t)E)‘fi(-t) 1__[ Gufi(t)
K,A u¥x
KEA u#Ex
*
He;(e) = Zd{"fi E (¢) H G,ei(t) Zﬂ?“i + complex conjugate
K u#x A )
=) 0 2
Mg (t) =‘Zm,¢fi chfi(t)
K u
and
= — i(m-n)w t | () (;) 2
Gugi(t) =Z Z Pnh e M Kéfm |4’in >
m=0 n=o
-~ — i(mn)o t| (x) (x) |2
Fegi(e) = Z Z Phe N ‘(@fm |—a— ¢in >
m=o n=o0 39k

c-2

A Sl e T St o]

(C-4)

dt

(c-5)

(Cc-5a)

(C-5b)

(C-5¢)

(c-5d)

(c-5e)

(c-6a)

(C-6b)
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N " — i(mndo t &) . &) &) ()
EKfi(t)=E E P, e K <¢fmla—-¢in><¢fm |¢in > (C-6c)
m=0 n=0 ] RS
The sums in Equations (C-6a,b,c) can be evaluated using the expression for the

density matrix of the harmonic oscillator in the coordinate representation
(Slater's sum or Mehler's formula).C™l The results are

2
Gei€t) = exp {E (ngg; | (c-7a)
L 2
Bari W =0 BGE N+ [EK(t)AK.fi] (C-7b)
Eegi(t) = E.(t)begi Ge(t) (c-7¢)
where
) 1
cosh(iw t + 5 Bhw )
Fe(t) = X E
2 sinh(% Bhw, ) (c-8a)
Ec(t) = Fe(t) - % coth (% Bhw, ) (c-8b)
Befi = Aef T Ui (C-8c)

In Equation (C-8c), q.f and q.i are the equilibrium values of the acoustic
coordinates when the fast subsystem is in states f and 1, respectively. Using
the results above, we can write the expression for the transition rate as
follows:

W(i+£) = 15 ./” exp(iwgit)Fei ()G (t)de (c-9)
he %
where
2 *
Fgi(t) =Z|"£Kfi| Fe (¢) +Z°{.<fi befi Ex(ﬂzfaf Afi 8afi Ex(e)
K ' K A

+

%* x
Mg; z :foi bgi E () + Mgy z :‘;foi 8 gi Ec(t)
K K

C-lgee, for example, O'Rourke, R. C., Phys. Rev., 81, 265 (19539«

C-3
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+ g ]2

i =ZW?.<fi
K
2
Gfi(t) = exp{Z FK(t)AKfi = S}

K

1 1 2
s = E.coth (E Bhw, )by £
K

C-4

EPRET (U T S SN W T N RO G

;-
I

(c-9a)

(c=0b)

(C-9¢)

(C-9d)
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APPENDIX D !

SADDLE POINT INTEGRAL FOR TRANSITION RATE ,<
3

It is convenient to make the change of variable z = it in the expression
for W(i+f) in Equation (9). Then Equation (10) can be written in the form

1
W(isf) = _1_ f Fei(-iz) e8(2)dy (D-1)

ih oG4

where

cosh(u_z+ Bfw ) 2
glz) = weiz + k2 K_b8,.¢1 - S
= 2 sinh(% Rhw, ) (D-2)

At a saddle point, g'(z,) = 0 so that

sinh(wnz% Rhw ) 2 A
wej o+ E : Wy befi = D~
= 2 sinh(l Bfuw,) Y
2

TR0V 3 DARTIT IRy DR TR -4 URTER .

. s > 5
2 alanan o

Equation (D-3) has many complex roots but precisely one real root. There is at

least one real root since the hyperbolic sine function goes to +w when z+iw. N
There cannot be more than one real root because g''(z) is never zero for real z 5
implying that g(z) is monotonic [See Equation (D-4)]. K
4

il . 14

2 cosh(w z+§BﬁwK) 2 4

ghlz) = E :w.c £ Oefi (D-4) 3

; 2 sinh(% Bhw, )

3

In particular, g"(z,)>0 so the direction of steepest descent is along the )

imaginary axis. Near the saddle point

DRy b

glz) = glzy) + % (z-20)28"(2,) (D-5)

DR W T B B L S S R IR SRR TR R IR P R COR S L I S U0 W S S I & Sac.2n L R B 2 A
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1
t Thus, deforming the contour of integration to pass through the saddle point, we .
b get _3
i@ 3
o W(i+f) = % Fri(-izglexp {glzp)} f exp {- % £2 g"(zgy)}dt (D-6) |
5 A o
and the final result is
W(i+f) = 12_ —2T_ Fgi(-izg) exp {g(zo)} (D-7) )
f g'"(z5) :
;
E More details on the saddle point integral may be found in Perlin's review article 4
E,’ (Reference 3, footnote, p. 3). :;
! ;
‘ If we can replace the acoustic frequencies w, by a single average frequency if
. wp, a considerable simplification is achieved. Then ¢
|45 ]
3 Z Z 2 1 1 2 ]
4 Ffl -lzo) = |"C\<f1| Fp +| flAKfl Fp - 5 cot > n'.)"ﬁwD)
)

{kafl Zoﬁgfl Begi * }: A£i Zaﬁ’itfl(xfl)}[ - = °°th(; MwD)_.é

-

LI RN EYSEORES S daen

.1
(331 (D-8)
where
b
coshlv, z_ + = Bfiw ) :
3 FD = D "o 2 D :1
E:‘ 2 sinh(-;_; Bfiwp) (D-8a) :
= 3
F_! Equation (D-3) which determines z, becomes .‘:
Ly ]
::: p = x sinh (wp zo + .;_ Rfuwp) (D-9) N
-8 -
b 1
:‘ where !4
: w
I P = - _fi (D-9a)
f L))
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S

. X = ©

& sinh(% fhwp)

The solution 1is

0%
E:
F WEi 2o = % ftwp p + |p|1ln {___x___}

|p|+2SoFD

and

Also,

= 1 - X ,p,
exp{g(zo)} exp{.E Bhupp + 2S,Fp Ss ;TET:EE;?Eé

2
g'"(zy) = 2up S, Fp

vy n
. e i i i
.
. A &
33

o o
.

0 IR
.

-r
0

T R o S e S
. 1 e
i

NN 5]
L

3

o
L—.‘-"d-.—d—.-—' aAcaoalaia aloas ) at WEGLTURE T, TPUC s A A Gy I TP e T D0 I T WP

a

SR SR R e e L S —— ~—v g —— i e T e i T Jbarme e S e e O e e A At e ARSI i A e e
s i o - » < .

(D-9b)

(D-9c)

(p-10)

(b-10a)

(p-1la)

(D-11b)
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APPENDIX E

<
4
EVALUATION OF & ¢; AND W) .. ]
b

Using the result in Equation (26) we obtain
. (HO) (HO)
(wf,—1-= o vg (Z) & (/e v (2)p dqq (E-1)
aq( 3q<

and, transforming the variable of integration from g, to Z, the result is

(HO)

v, (HO) dy., (2) :
(wf, _1.) =/wf (z) 2 92 dz + 2 <1n /a) S fi (E-2)
9q, dz 3q, 3q,

Since f#i, the second term in Equation (E~2) is zero. Differentiating Equation
(23) we obtain .

fwp 22 =1 p74 ¢z + 2973 E Boyay - 2077 B G ' (E-3)
3q, 2 1

Using Equations (E-3), (E-2), and (7a) we obtain . |

Hw
Kot o 2ate Mt maplza i
xf1 g )2 p K I 32'1

i ("-3 Z Boady =0/ BC.:) <£| 2| i’} =)
A - -~

where <f|2 3/32,i> and <f,3/32’i> are the usual harmonic oscillator matrix
elements. These may be evaluated most conveniently by writing Z and 3/3Z in
terms of the creation and annihilation operators, a and a, and then using the
raising and lowering properties of these operators.

z= 1l(a+a") (E-5a)
} ]

i B L@ =at) (E~5b)

32 23

E-1

a m o Amda® adntad alad ol o A S P S PN S S T S TN SR S S MU SR NN S SO DMy SPL S it T PP S R




- - r——r T T e e e e W W I e T T T T T T T I T T —— “T
[ i
i :
P NSWC TR 83-90 )
- :
a+’n> = /n+l | a+l> (B=5e’ ]

a|n> = v/n |n—1> (E-5d)
bﬂ The end result is ,_i
t - .

2 Al A 7 - e
kfi = = =" ¢/7 o Beada = p/ BC| /T 8¢ i1 - fi+tl 8¢ 541 ]
fuw,y

X ]
1 .
ra 1,4 gz T ———— 1 '

i e (07 [ i(i=1) 8¢ j-2 ~6¢1 - V(i+1)(i+2) Gf’i+2J (E-6)

A similar, though lengthier, calculation yields mei. Since the result has
L many terms, we give here only the lowest order term involving powers and J
. products of Cx and Bgy: 3
m . . .
cfi = 77 fu, %."" T sg i-1 - i+l Gf’i+1> (E~7)
w
o

) 4
8 1

3 E-2
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APPENDIX F

b o - o MDD B A

ACOUSTIC MODE WAVE EQUATION APPROXIMATE SOLUTIONS

The internal mode eigenvalues, Equation (25), are the effective potentials

which determine the acoustic mode Born-Oppenheimer wave functions via Equation
(22). To obtain an approximate solution, expand the eigenvalues ef in powers of
q, up to quadratic terms. This is a good approximation if the anharmonic

corrections to the total Hamiltonian are small so that B,C<<1l. Then,

St N A Mk A B ARAA ot Ml o

=5 (s+%) Ce + P, qy (F-1) g

and

aze ccC
— S = fwgbyy —(s+l) €A (F-2)
3q,3q, 2 fw,

Thus, the equilibrium acoustic coordinates are
¢7 qe g = -(s+l) EE_ (F-3)
o - e
;1 and the effective potential is
-:_ eg = €5(qeq) + E :%f“’x(qoc'qocs)z (F-4)
- K
o In Equation (F-4) we have ignored the off-diagonal quadratic terms since they are
- small under our previous assumptions. These terms lead to mixing of the acoustic

coordinates and subsequent modifications of the acoustic frequencies. In terms
of the variables §q, = q - qcs, the acoustic wave equation, Equation (22),

becomes
z : 1 e
= hoe G - b + Jg) ¢sn = Esn%sn
2 3 (F-5)

R A N N NV R —a A Aa e s alalalialaiimtalomtiatentota'nintal xlall ale LIS S e e e e .
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K '.'r‘..

gt

| O where

o 2
g 3s = (sebyfug -Z%quKs (F-6)
K

Thus the total energy eigenvalues are

m Eqn = Jg +Z (n,(+%)fm,< (F-7)
o K

- YWYy A e
i AR 3 1 ol By
oL « e

.A'..l

:
:
3
4
E;
3

E=2
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APPENDIX G

APPROXIMATE TRANSITION RATE FORMULA

We approximate the coefficients C, and B, using Equations (30) and (31) as
our guide:

G = L (ﬁ) (G-1)
/R Jop wo \M .
£.8 3/2
Bey = —2 (ﬁ) (6-2)
N‘“D'/‘E M

We have denoted 1/2 f"(r,) by B. The quantities f; and f, are dimensionless
numbers which we will later set to 1//2 and 2, respectively. Substitute
Equation (27) into (9e) and substitute the result into Equation (1l1b) to obtain
the Huang-Rhys factor for a transition from state i to state f:

5o = L=D)2 D 2
Zﬁzwg k (6-3)

The sum contains N terms, so upon substituting Equation (G-1) into (G-3) we get

2 w
So = L f1(f~1)2 [B_\[A\2
2 2 My
MnD ofJ%o (G-4)

In the following, we set f=i+l. Using Equations (28), (9e), (27), (G-1), (G-2),
and (G-4) we obtain

OC 2
E k,1+1,1 AKI =

| 3
£ \2 3 ® 4
4{22) (i+1)(2i+1)2 s, (fwp)2 D {1 + (21+1)Sown/wo} (G-5)
fl We
G-1

PO G DR SRR SRV
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The second term in curly brackets in Equation (G-5) arises from the second term

in Equation (28). 1In our application, Sy, is much less than one, therefore, we
can omit the second term in Equation (28). Similarly, we obtain

2 £ , 2
:E:lizx,i+1,i| =132 ?% (i+1)(2i+1)2 S,(fwp)2 wplu, (G-6)
K

. e 2
= mel,iﬂ,i ZO{A,i-pl,i Ay = S(é) (i+1)(2i+1) s, (hwp)? wD/(:g "

K A

2 £.\2
|2£:7”L,1+1,i| = 4<?%) (i+1) Sg (hwp)? wplug (G-8)
1
K

Substituting Equation (G-5)-(G-8) into Equation (D-8) we obtain
. f 2 3 w .
Fiel i(-izg) ={=2) (i+1)Gup)? 2D s, {(21+1)2 [p+(P=8)2]
’ 3 ‘Wwo
+ 4(2is1)(2=5) + 4} (6-9)

where P and S are defined in Equations (10d) and (10e). If we now substitute
Equation (G-9) into Equation (10), we obtain an expression for W(i+i+l)
depending on T, w,, wp, and S,. All the third order anharmonic coupling effects
are condensed into the Huang-Rhys factor S,.

If So<<1 and the temperature is not too large, we may simplify the result
further. The upper temperature limitation is determined by the condition x%<<1

where x is defined in Equation (llc). Thus the condition is

% Bfwp > arcsinh S, = S, {G-lo)

Rearranging (G-10) we obtain the condition
T < Tp/2S, (6-11)
where Tp is the Debye temperature. Under this condition, $<<1 and P= |p| . If we

set f, =2, f; = 1//7, and AQ = wp S,/2, we obtain the result given in Equations
(2, 2a, 2b).
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APPENDIX H

MOMENTS OF SPECTRAL BAND SHAPE FUNCTION

The r'th moment of the distribution I(w) is defined by

f I(wlwT dw

-0

<wI> = (H-1)

/ I(w)dw

where I(w) is defined in Equation (34). 1In order to evaluate <w®> note
that

o r
/ wle™WE 4y = 27iT d 6(t)
o . de? (H-2)

where §(t) is the Dirac delta function. Thus

/) I(wwTdw = 27if / e8(it) M dt (H-3)
o dtTt

E= )

After r integrations by parts we obtain

f I(wwTde = 27 _d [eg(it)] (H=4)

From Equation (D-2) we note that g(0) = 0 so that

r g(z)
<wT> = (21)r 4 &~ (H-5)
et
2=0
The positive sign is for absorption and the negative sign is for emission.
The average absorption or emission frequency is
T =<w> =:g'(0) = = (wfi*%AQ) (H-6)

H-1
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where
2
AR = ) wgh, (H-7)
K
For absorption, let w, = wg;>0 and for emission let wy, = -wg;>0. Then
T = owg ot % AQ (H-8)

Thus, the Stokes parameter AR is the difference between the mean absorption and
emission frequency. The second moment of. the distribution is

2 2 1 1 2 1 2
o¢=<(w=m)> = g '(0) = E w, coth (E B’ﬁmK)AK (H-9)
K

and the third and fourth moments are

1 3 12
<(og)3> =2g'""'(0) =2 L wehy (H-10)
K
<w-3)4> = g{4)(0) + 3[g"(0)]2
1 2 : 4 1 2
=2 wg coth(Z B )a, + 3[{g"(0)]2 (H-11)
K | _—
Again, introducing an average acoustic frequency wp, we can express the
moments in terms of the Huang-Rhys factor:
AR = 2S,wp (H-12)
2
62 = wp S, coth (% #Rwp) (H-13)
—3 -1
vy = <Cws@)™> o [/s'c; coth (L afiup) (H-14)
= 2
—\4 =]
Y4 = <_(_°’_‘_z_)_> -3 = [so coth (% Bhwp) (H-15)
o

The skewness y3 and kurtosis y,; are measures of the deviation from a gaussian
distribution.

H-2
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APPENDIX I

DETERMINATION OF STOKES PARAMETER FROM BANDWIDTH

A straightforward method of obtaining a distribution with a finite number
of specified moments would be to take the product of a polynomial with the error
function, choosing the coefficients of the polynomial appropriately. An

_equivalent, but easier, approach is to take a linear combination of the error
function and its derivatives with appropriate coefficients:

I(x) = Z and (n)(x) (I-1)
n=0
where )
¢ (x) = exp {- _;. x2$//g (1-2)
Integrating by parts we obtain the formulas
® I, ,n,
f x2T I(x)dx = (2r): 2n (1-3)
A 2t (r-n).
3 £ 20a
2r+l 1(x)dx = (2r+1)! Z 2n+l
[ * M Ty g T =4

If we wish I(x) to be a normalized distribution with zero mean, unit standard
deviation, skewness y3, and excess Y4, then, from Equations (I~3) and (I-4) we
find that ap =1, a; =0, a;, =0, ag = -13/6, and L ’y4/24. Thus

I(x) = ¢(x) - ;_3 63 (x) + 1—‘{- 6 (4)(x) (1-5)

1-1
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Now let x = (ww)/o and substitute for ¢, y3, and vy, from Equations (H-13),
(H-14), and (H-15). If we then set I(x) = I(0)/2, we obtain an equation which

can be solved numerically for S,, given (w-W)/wp. Another distribution, quoted
by Lax (Reference 5, footnote p. 4) as being due to Edgeworth, includes a sixth
derivative

BGo) =g G 3 ol T )y e 6 (6)(x) (1-6)

The distribution (I-6) provides a not significantly better match for the higher
moments.

1-2
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APPENDIX J

VALIDITY OF THE SADDLE POINT APPROXIMATION

The saddle point approximation for the transition rate, outlined in Appendix
D, is thleirst term in an asymptotic expansion in the sense defined by
Poincare.” - 1In order for the first term to be a good approximation to the
integral, the second term must be much smaller. The expansion for an integral
of the form in Equation (D-1) has been worked out by Hoare for the case when the
function g(z) and its derivatives are of the _order of N where N is the asymptotic
expansion parameter and is presumed large.J' In our case, the relevant
asymptotic parameter is p, defined in Equation (D-9a) in the average acoustic
frequency approximation. The ratio of the second term in the asymptotic
expansion to the first term must be much less than one. Using Hoare's result,
we obtain

e W) 512

: << 1 J-1)
[g"(z5)12  3[g"(z,)]3 |

L
8

In the average acoustic frequency approximation, the derivatives of g are:

2
820 (z0) =0 " P 031 (3-2)

2n+l
g(20+1)(z.) = up P;n>1 (3-3)

where P ='Vp2+x2. Substituting (J-2) and (J-3) in (J-1), we get

2
1 = 19
3 | 1 3 (%) | << 1 (J-4)

L

b

L.'
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J‘l.leffreys, H. and Jeffreys, B. S., Methods of Mathematical Physics, 3rd ed.,
Cambridge University Press, 1956, c. 17.

J=24oare, M. R., J. Chem. Phys. 52, 5695 (1970).

J=-1
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From (J-4) we see that the second term in the expansion is less than 1/12 the
first term if |p| is greater than one, independently of the value of x
8 [= Sy/sinh (Bhw_ /2). We also see that the second term is less than 1/8 the g
rG first term if X is greater than one. In fact the expansion is asymptotic in the "

parameter P so that the approximation becomes better if either x or p becomes
large.

] In the case of non-radiative transitions, |p|>l, so the criterion is
satisfied whatever the value of S,. In fact |p|>>1 is required for the Born-
!I Oppenheimer approximation to be valid.

Bt e

For radiative transitions, however, the saddle point approximation 1is not
good. For radiative transitions,

p == (wg; +w)lup (J-5)

where the positive sign is for emission and the negative sign is for absorption
at frequency w. The range of values of p which are of interest (that is,
values corresponding to frequencies within the spectral band) is then

Aw
2wy

p = SO + (J-6)

where Aw is the bandwidth. Since S, typically is much less than one, both
lp| and x will be much less than one so that condition (J-4) cannot be satisfied
for values of p which correspond to frequencies lying within a spectral band.

Wy e
P

. e Ty
g W i - 4

J=2
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